On size multipartite Ramsey numbers for stars versus paths and cycles

نویسندگان

  • Anie Lusiani
  • Edy Tri Baskoro
  • Suhadi Wido Saputro
چکیده

Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal et al. determined the size multipartite Ramsey numbers of paths Pn versus stars, for n = 2, 3 only. Furthermore, Surahmat et al. (2014) gave the size tripartite Ramsey numbers of paths Pn versus stars, for n = 3, 4, 5, 6. In this paper, we investigate the size tripartite Ramsey numbers of paths Pn versus stars, with all n ≥ 2. Our results complete the previous results given by Syafrizal et al. and Surahmat et al. We also determine the size bipartite Ramsey numbers m2(K1,m, Cn) of stars versus cycles, for n ≥ 3,m ≥ 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size Multipartite Ramsey Numbers for Small Paths Versus Stripes

For graphs G and H, the size balanced multipartite Ramsey number ) , ( H G m j is defined as the smallest positive integer s such that any arbitrary two red/blue coloring of the graph s j K × forces the appearance of a red G or a blue H . In this paper we find the exact values of the multipartite Ramsey numbers ) , ( 2 3 nK P m j and ) , ( 2 4 nK P m j .

متن کامل

Size multipartite Ramsey numbers for stripes versus small cycles

For simple graphs G1 and G2, the size Ramsey multipartite number mj(G1, G2) is defined as the smallest natural number s such that any arbitrary two coloring of the graph Kj×s using the colors red and blue, contains a red G1 or a blue G2 as subgraphs. In this paper, we obtain the exact values of the size Ramsey numbers mj(nK2, Cm) for j ≥ 2 and m ∈ {3, 4, 5, 6}.

متن کامل

Ramsey numbers of ordered graphs

An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...

متن کامل

1 7 O ct 2 01 7 Projective planes and set multipartite Ramsey numbers for C 4 versus star Claudia

Set multipartite Ramsey numbers were introduced in 2004, generalizing the celebrated Ramsey numbers. Let C4 denote the four cycle and let K1,n denote the star on n + 1 vertices. In this paper we investigate bounds on C4−K1,n set multipartite Ramsey numbers. Relationships between these numbers and the classical C4−K1,n Ramsey numbers are explored. Then several near-optimal or exact classes are d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EJGTA

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017